
Quorum-less distributed writes
One of the most important issues that may arise in a distributed filesystem deployment is a
critical condition called "split brain": a situation where a network is partitioned into one (or
more) independent parts that cannot reach each other, and this causes two or more
replicated copies of a file to become divergent. One of the ways in which this problem is
prevented is through a write quorum – for a write to be acknowledged, it must be confirmed
by a majority of nodes; this means that most systems can guarantee a reliable write only
with a minimum of 3 nodes, and when degraded to two nodes they are unable to guarantee
operations in case of further faults. NodeWeaver uses a different approach (called version
vectors) – to guarantee reliable writes even in degraded configuration; this method minimizes
the performance hit caused by quorum methods, focusing on the rare event (the split brain)
instead of the common one (distributed writes). Version vectors allow to correct the damage
caused by split brain events without interfering in standard IO operations on the cluster, by
providing the information necessary to recover the correct information from the splitted
nodes.

 Why is split brain a problem?
To understand it, we must first get an overview of
how NodeWeaver handles the "normal" condition. A
NodeWeaver cluster is composed of many servers,
connected through a network; when the cluster
becomes active, all the servers participate in a
process called "master election", where one of the
servers becomes the "master" and handles the
coordination of the others. This coordination is loose,
since in our platform the master does not directly
control every aspect but sends messages through
lightweight agents (called "remotes") that run on the
individual nodes; the master must however be unique,
to prevent two separate entities giving conflicting
commands. So, the normal operation is like this:

With all the nodes connected to a single switch. If a
node fails, the others are unable to reach its internal
IP address, and the system decides after a
predetermined period to mark it as "dead" and the
data and VM that were hosted there are recreated
on another available node. Now, let's imagine a more
complex scenario:

We have now two switches, with an uplink between
the two (the purple node is the master). Let's imagine
that the uplink fails, so that we end up with two
separate networks; in this condition, the second
network is unable to reach the old master (and the
other 3 nodes) and will thus miss a master. This will
force a new election, and each network partition will
assume the other nodes disappeared, forcing a
replication of all the data and VMs that were on the
other side:

This situation is known as split brain; a condition
where two sides are not able to communicate but
continue to work independently. The problem is what
happens when the link is reconnected - you end up
with two masters, two copies of all data and VMs that
may have diverging contents.

 Canary IP protection
To prevent this, NodeWeaver uses an external device
that is reachable with ICMP pings, called a Canary IP.
The canary IP must be external to the cluster, and
should be reachable at all times when the network
works properly, but unreachable when the network
fails. It may be a router, a physical server or desktop,
even a small, dedicated device like a preconfigured
Raspberry-PI device that is left always on on the
network. It must not be a VM running on the same
NodeWeaver cluster, as it would provide obviously no
protection at all against its own split condition.

WHITEPAPER

Quorum-less distributed writes
With the Canary IP device connected to the network,
the resulting design appears like this:

What happens now if the link between the switches
goes down? The nodes that are connected to the
switch on the right are unable to reach the canary IP,
so they assume that the network is not working
properly, and thus will not cause an election -
preventing split brain. IO will be suspended, and after
a programmable delay the VMs will be shut down
(and assuming they are configured to do so, they will
be restarted on the nodes on the left). The Canary IP
device does not need any special software or
configuration, and apart from responding to ICMP
pings it will not need any additional functionality (the
IP must not be the management IP of one of the
switches, though - during a switch reboot, it may
respond to pings but not route any packets!) There
may be, however, configuration errors that lead to
split brains - for example, a software partitioning;
complex routing infrastructure may lead to something
like this:

In this case, the canary responds to pings from both
sides - and we return to a split brain condition! While
much less frequent, this may still happen. What the
nodes see is a sort of "parallel universe" - each side
continues on different courses, starting from the
point in time when the split happened. The real
problem happens when the two sides get connected
back again - and you have two copies of everything,
but with different data and conflicting versions.

 Version vectors to the rescue
In this situation, NodeWeaver recovers gracefully
thanks to our version vectors; to understand how this
works, we first have to explain a bit about how
NodeWeaver saves data.

Everything within NodeWeaver is stored in a
distributed filesystem that breaks data into small
blocks of variable size (from 64Kb up to 64MB) called
"chunks". Each chunk includes not only the data, but
also a CRC verification and a "version vector", that
gets updated at every write. In a sense, we always
create new chunks that silently replace the old ones;
this is necessary because we don’t confirm a write to
have happened until as many nodes as the replication
level required (the "goal") have confirmed the local
write.

So, to return to our split brain event: the two sides of
the network elect their master, VMs get replicated
and data is copied again. What happens when the
two sides reconnect? An internal NodeWeaver probe
checks for the presence of two masters, and the
following happens:

• The master that is running for the longest
time sends a shutdown message to the
other, which is demoted to being a normal
node

• The VMs that are replicated on the wrong
side are deleted

• The (now lone) master starts checking the
chunks for incongruences; all chunks that
are part of the wrong "temporal line" are
deleted and replaced with the correct
ones.

We can do that, because the master keeps a running
log of all changes to the distributed file system,
keeping track of the CRC and version of each change;
this way, when we encounter the chunks from the
right side of the network the master can recognize
those as inconsistent (because their CRC and version
don’t match with the running log) and replace them
with the correct ones. This “running log” is called the
metadata stream, and is sent continuously to all the
nodes, so independently of which node resumes
operations first, it will always be consistent.

The end result is that the coherence of the file
system is preserved; this is however a quite complex
and resource-hungry task - so plan in advance to
prevent it from happening! This is the reason why
NodeWeaver can work reliably with two nodes only -
writes are not dependent on a "quorum", that is, a
majority decision when executing writes; all changes
to the distributed file system are treated like a
transaction, and the transactions are "signed"
through the CRC and version vector, so that a parallel
cluster that split from the main one will have
unreplayable transactions that are properly managed
on cluster rejoin.

WHITEPAPER

